JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Attenuation of hippocampal long-term potentiation by ethanol: a patch-clamp analysis of glutamatergic and GABAergic mechanisms.

Long-term potentiation of synpatic transmission (LTP) of the perforant path--dentate gyrus synapse is induced by 5 Hz, theta-like stimulation patterns. Such stimuli induce plasticity that is most likely driven by a decrease in synaptic inhibition (disinhibition) mediated by GABAB autoreceptors. In the present study, we demonstrate that LTP induced in this manner is completely antagonized by ethanol. In order to determine the site of ethanol inhibition of LTP induced by theta-like stimulation, we combined slice patch recordings with pharmacologic isolation of the individual glutamatergic and GABAergic synaptic currents. The present experiments revealed that ethanol inhibited NMDA receptor-mediated synaptic currents without potentiation of GABAA currents or attenuation of GABAB-mediated fading of GABAA synaptic currents. These observations with ethanol contrasted with the actions of the water-soluble benzodiazepine midazolam, which strongly potentiated GABAA synaptic currents, reversed the effect of GABAB-mediated fading of GABAA synaptic currents, and therefore blocked the resulting NMDA synaptic currents. These data indicate that the effects of ethanol on long-term changes in synaptic strength in the rat hippocampal formation are due primarily to an action at the NMDA receptor-channel complex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app