JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Epigenetic responses following maternal dietary exposure to physiologically relevant levels of bisphenol A.

Animal studies have linked perinatal bisphenol A (BPA) exposure to altered DNA methylation, but little attention is given to analyzing multiple physiologically relevant doses. Utilizing the viable yellow agouti (A(vy)) mouse, we examine the effects of developmental exposure through maternal diet to 50 ng BPA/kg (n = 14 litters), 50 μg BPA/kg (n = 9 litters), or 50 mg BPA/kg (n = 13 litters) on global and candidate gene methylation at postnatal day 22. Global methylation analysis reveals hypermethylation in tail tissue of a/a and A(vy)/a offspring across all dose groups compared with controls (n = 11 litters; P < 0.02). Analysis of coat color phenotype replicates previous work showing that the distribution of 50 mg BPA/kg A(vy)/a offspring shifts toward yellow (P = 0.006) by decreasing DNA methylation in the retrotransposon upstream of the Agouti gene (P = 0.03). Maternal exposure to 50 μg or 50 ng BPA/kg, however, results in altered coat color distributions in comparison with control (P = 0.04 and 0.02), but no DNA methylation effects at the Agouti gene are noted. DNA methylation at the CDK5 activator-binding protein (Cabp(IAP)) metastable epiallele shows hypermethylation in the 50 μg BPA/kg offspring, compared with controls (P = 0.02). Comparison of exposed mouse liver BPA levels to human fetal liver BPA levels indicates that the three experimental exposures are physiologically relevant. Thus, perinatal BPA exposure affects offspring phenotype and epigenetic regulation across multiple doses, indicating the need to evaluate dose effects in human clinical and population studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app